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Abstract 

Richness estimation of an interesting area is always a challenge statistical work 

due to small sample size or species identity error. In the literatures, most 

richness estimators were only proposed to tackle the underestimation of the 

size-limited sample. However, species identity error almost occurs in each 

species survey and seriously reduces the accuracy of observed, singleton, and 

doubleton richness in turns to influence the behavior of richness estimator. 

Therefore, to estimate the true richness, the biased collected data due to 

species identity error should be modified before processing the richness 

estimation work. In the manuscript, we propose a new approach to correct the 

bias of richness estimation due to species identity error. First, a species list 

inventory from a subplot obtained by the investigator was used to estimate 

the species identity error rate. Then, we can correct the biased observed, 

singleton, and doubleton richness of the raw sampling data from the 

interesting area. Finally, the rich-ness estimators proposed in the literatures 

could be supplied to get the more correct estimates based on adjusted 

observed data. To investigate the behavior of the proposed method, we 

performed simulations by generating data sets from various species models 

with different species identity error rates. For the purpose of illustration, the 

real data was supplied to demonstrate our proposed approach. A 

presence/absence weeds species was surveyed in the organic farmland 

located at Soft Bridge County in the North of Taiwan. 
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1. Introduction 

Long-term biodiversity monitoring is the basis for ecological research and 

promotion of organic agriculture. In recent years, more and more non-

professional citizen scientists have participated in the projects of monitoring 

diversity, so the possibility of species identity errors may increase dramatically 

in the collected data. Therefore, correcting the impact of species identification 

errors becomes an important statistical issue. 

Species richness is the most intuitive and widely used as biodiversity index 

due to its ecological intuitive concept and simplest form. However, due to the 
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sampling limitation of time or other re-sources, completely species inventories 

in the wild field are almost unattainable goals. Therefore, the observed 

richness in the sample always underestimates the true species richness in the 

assemblage. In the literatures, among the discussed estimation approaches of 

species richness, the nonparametric methods are widely used in practical 

application, which include first order Jackknife approach, second order 

Jackknife approach by Burnham and Overton (1978) and Chao1 (or Chao2) 

lower bound estimator by Chao (1984). They all use the observed rare species 

in the sample (i.e. singletons and dou-bletons) to estimate the unseen richness 

in the sample. However, species identity error almost occurred in each survey 

especially in vegetation sampling was ignored before and recently discussed 

in the literatures by Vittoz and Guisan (2007), Burg et al. (2015), and Morrison 

(2015). This identity error may seriously make observed richness biased and in 

turn the estimation of true richness will be seriously biased. Therefore, without 

error adjustment, the species richness estimation will be inaccurate based on 

original sampling data. In this manuscript, we have proposed a modify 

approach to revise the biased sampling data caused by species identity error. 

From the results of simulation study in secession 3 show that our adjusting 

approach can be nearly unbiased to revise the biased observed richness, 

singleton and doubleton richness. Also, the richness estimators based on the 

revised data effectively correct the bias caused by the species identity error. 

 

2. Methodology 

In this article, we choose Chao2 lower bound estimator for incidence data 

as our species richness estimator. Since we assume that species identity error 

exists in the process of sampling, adjustment of richness estimator should be 

considered. 

First, we need to estimate the mean species identity error rate of observer 

or investigator. Plant inventories from subplot of the area which the survey is 

conducted. We assume that the number of species (𝑆𝑠𝑢𝑏) and the categories 

of species in the subplot are known by the experiment designer but unknown 

by the observer who goes conducting inventories. After conducting 

inventories, we have the information that the number of observed species 

belongs to the subplot (𝑆𝑠𝑢𝑏,𝑒) and the number of observed species does not 

exist in the subplot (𝑓𝑠𝑢𝑏,0). 𝑋𝑖 represents the record status of the survey of 

species 𝑖. When 𝑋𝑖 = 1, species i has been recorded. When 𝑋𝑖 = 0, species 𝑖 

has not been recorded. We assume the species identity error (𝑒) is a random 

variable follows the distribution of 𝐹(𝑒) with mean 𝑒.̅ 𝑟 denotes the mean 

probability that a species is misidentified into another species which belongs 

to the sampling plot. 𝑓𝑠𝑢𝑏,0 equals to the number of species which is 

misidentified and recorded as species do not exist in the subplot. Also, if plant 

inventories of the subplot are correct, then 𝑆𝑠𝑢𝑏,𝑒  should be equal to 𝑆𝑠𝑢𝑏 
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species. However, when species identity error occurs, 𝑆𝑠𝑢𝑏,𝑒  may not be equal 

to 𝑆𝑠𝑢𝑏  species. When the 𝑖-th species is misidentified and other species are 

not misidentified to the 𝑖- th species, 𝑖-th species is not recorded. After that, 

we have the equations: 

𝐸(𝑓𝑠𝑢𝑏,0) = ∫ 𝑆𝑠𝑢𝑏 × 𝑒 × (1 − 𝑟)𝑑𝐹(𝑒) ≈ 𝑆𝑠𝑢𝑏 × 𝑒̅ × (1 − 𝑟),   (1) 

and 

𝐸(𝑆𝑠𝑢𝑏,𝑒) = 𝑆𝑠𝑢𝑏 −∑ 𝐸[𝐼(𝑋𝑖=0)] ≈ 𝑆𝑠𝑢𝑏 −

𝑆𝑠𝑢𝑏

𝑖=1

𝑆𝑠𝑢𝑏∫𝑒 × (1 −
𝑒

𝑆𝑠𝑢𝑏
𝑟 − 1

)

𝑆
𝑠𝑢𝑏−1

𝑑𝐹(𝑒) 

                   ≈ 𝑆𝑠𝑢𝑏 − 𝑆𝑠𝑢𝑏 × 𝑒̅ × (1 −
𝑒̅×𝑟

𝑆𝑠𝑢𝑏−𝑟
)
𝑆
𝑠𝑢𝑏−1

.      (2) 

By solving those two equations, we have the estimate of 𝑒 ̅and r which are 

denoted by 𝑒̂̅ and 𝑟.̂ 

Second, the sampled observed, singleton, and doubleton richness should 

be adjusted after sampling in the plot. The true observed, singleton, and 

doubleton richness are denoted by 𝑆𝑜𝑏𝑠 , 𝑄1, and 𝑄2, respectively. The sampled 

observed, singleton, and doubleton richness without adjustment are denoted 

by 𝑆𝑜𝑏𝑠,𝑒 , 𝑄1𝑒 , and 𝑄2𝑒 , respectively. When species identity error occurs, the 

sampled observed richness is formed by the observed species which do not 

misidentified and observed species which misidentified as species do not exist 

in the plot. Thus, we have the expected sampled observed richness: 

𝐸(𝑆𝑜𝑏𝑠,𝑒) ≈ 𝐸{𝑆𝑜𝑏𝑠[(1 − 𝑒) + 𝑒 × (1 − 𝑟)]}. 

Next, we have the expected observed richness adjustment: 

𝑆𝑜𝑏𝑠,𝑎 =
𝑆𝑜𝑏𝑠,𝑒

1−𝑒̅̂×𝑟̂
      (3) 

When species identity error occurs, the possibilities of sampled singleton 

species are as follows: (1) singleton species which do not misidentified, and 

other species would not be misidentified as the singleton species at the same 

time, and (2) singleton species which misidentified as species do not exist in 

the plot, and other species would not be misidentified as the singleton species 

at the same time. Thus, we have the expected sampled singleton richness: 

𝐸(𝑄1𝑒) ≈ 𝐸 {𝑄1[(1 − 𝑒) + 𝑒 × (1 − 𝑟)] × (1 −
𝑒

𝑆𝑜𝑏𝑠
𝑟 − 1

)

𝑆
𝑜𝑏𝑠−1

} 

                              ≈ 𝐸{𝑄1[(1 − 𝑒) + 𝑒 × (1 − 𝑟)] × 𝑒𝑥𝑝(−𝑒 × 𝑟)}. 

Similarly, when species identity error occurs, the possibilities of sampled 

doubleton species are as follows: (1) doubleton species which do not 

misidentified, and other species would not be misidentified as the singleton 

species at the same time, (2) doubleton species which misidentified as species 

do not exist in the plot, and other species would not be misidentified as the 

singleton species at the same time, and (3) when a singleton species 

misidentified to a singleton species, the doubleton richness increases by one 

unit, and other species would not be misidentified as the doubleton species 
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which is formed by singleton species at the same time. Accordingly, we have 

the expected sampled doubleton richness: 

𝐸(𝑄2𝑒) ≈ 𝐸{𝑄2[(1 − 𝑒) + 𝑒 × (1 − 𝑟)] × 𝑒𝑥𝑝(−𝑒 × 𝑟)}

+ 𝐸 {𝑄1 × 𝑒 × 𝑟 × (1 −
1

𝑇
) ×

𝑄1
𝑆𝑜𝑏𝑠,𝑎

× 𝑒𝑥𝑝(−𝑒 × 𝑟)}. 

where 𝑇 denotes the number of sampling unit. By solving the two equations 

above, we have the singleton and doubleton richness adjustment: 

𝑄1𝑎 =
𝑄1𝑒

(1−𝑒̅̂×𝑟̂)𝑒𝑥𝑝(−𝑒̅̂×𝑟̂)′
     (4) 

and 

𝑄2𝑎 =
𝑄2𝑒−𝑄1𝑎×𝑒̅̂×𝑟̂×(1−

1

𝑇
)×

𝑄1𝑎
𝑆𝑜𝑏𝑠,𝑎

×𝑒𝑥𝑝(−𝑒̅̂×𝑟̂)

(1−𝑒̅̂×𝑟̂)×𝑒𝑥𝑝(−𝑒̅̂×𝑟̂)
 .    (5) 

However, the estimation of traditional Chao2 estimator will be inaccurate 

even though 𝑄1𝑎  and 𝑄2𝑎  are asymptoticly unbiased. It causes the value of 
𝑄1𝑎
2

2𝑄2𝑎
 overestimated. Hence, we choose first-order Jackknife and Chao2 richness 

estimator as the theoretical foundation of deriving the adjusted richness 

estimator. We propose an adjusted richness estimator by Taylor series 

expansion of 𝐸 (
𝑄1
2

2𝑄2
)  by the mean 𝑄1  and 𝑄2 . Then we get the difference 

between 
[𝐸(𝑄2)]

2

𝐸(2𝑄2)
 and 𝐸 (

𝑄1
2

2𝑄2
) to have the adjust term: 

𝐸 (
𝑄1
2

2𝑄2
) ≈

[𝐸(𝑄1)]
2

𝐸(2𝑄2)
+
𝑉𝑎̂𝑟(𝑄1)

2𝐸(𝑄2)
−
𝐸(𝑄1)𝐶𝑜𝑣(𝑄1, 𝑄2)

[𝐸(𝑄2)]2
+
[𝐸(𝑄1)]

2𝑉𝑎̂𝑟(𝑄2)

2[𝐸(𝑄2)]3
, 

where 𝐶𝑜𝑣(𝑄1, 𝑄2) = −
𝑄1𝑄2

𝑠̂
 , 𝑉𝑎̂𝑟(𝑄𝑖) = 𝑄𝑖 (1 −

𝑄𝑖

𝑠̂
). Therefore, we have the 

adjusted richness estimator: 

𝑆̂𝑎𝑑𝑗 = 𝑆𝑜𝑏𝑠,𝑎 +
𝑇−1

𝑇
𝑚𝑎𝑥 {(

𝑄1𝑎
2

2𝑄2𝑎
−

𝑄1𝑎

2𝑄2𝑎
−

𝑄1𝑎
2

2𝑄2𝑎
2 ) , 0}.   (6) 

When 0 ≤ 𝑄2𝑎 ≤ 1, by simulation studies, the adjusted richness estimator will 

be: 

𝑆̂𝑎𝑑𝑗 = 𝑆𝑜𝑏𝑠,𝑎 +
𝑇−1

𝑇
𝑄1𝑎 .     (7) 

 

3. Result 

a. Simulation Results 

To test the performance of the adjusted richness estimator, we presented 

the simulation results by several species detection models and different 

settings of number of sampling units. We fixed 𝑆𝑠𝑢𝑏 = 40 and 𝑆 = 100. 500 

simulation data sets were generated and 200 bootstrapping trials were 

conducted by each simulation data. The bootstrapping method is 

regenerating 𝑆𝑜𝑏𝑠,𝑎 , 𝑄1𝑎′  and 𝑄2𝑎  by binomial distribution independently in 

order to increase the estimated standard error while the traditional 

bootstrapping method usually underestimates the standard error in this case. 

In true method, the estimation of species richness used the traditional Chao2 
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estimator by the data without species identity error. In observed method, the 

estimation of species richness used the traditional Chao2 estimator by the data 

with species identity error. In adjusted method, the estimation of species 

richness used the adjusted richness estimator by the data with species identity 

error. 

When species identity error occurs, the estimate of species richness by 

observed method will be underestimated, which causes larger bias. The large 

bias still exists even though the increase of the number of sampling units. 

Since adjusted method slightly overestimated species richness when the 

species identity error rate is large, it reduces a great quantity of bias. The 

variation of observed method is lower, and it remains the same by different 

species identity error rate. The adjusted method has a higher variation. When 

species identity error rate is larger, the variation of adjusted method is larger. 

By evaluating both bias and variation, the observed method has a larger RMSE 

(Root Mean Square Error) due to its larger bias. The adjusted method has 

about half RMSE of the observed method when the number of sampling unit 

is large. 

b. Extrapolation for Poisson Counts 

The data set was collected of weed species from organic farmland located 

at Soft Bridge county in the North of Taiwan. There are 12 transect lines with 

length 20m each were conducted. Only the incidence (detection or non-

detection) of species in each transect line was recorded. Before richness 

estimation, a subplot occupied by 40 known weed species was treated as the 

testing of the degree of investigator's skill. Compare these 40 weed species 

list with the inventories of the investigator, we have 𝑆𝑠𝑢𝑏 = 40, 𝑆𝑠𝑢𝑏,𝑒 = 35, and 

𝑓𝑠𝑢𝑏,0 = 1. Therefore, we have the estimate of 𝑒=̂ 0.14 and 𝑟=̂ 0.82 based on 

equations (1) and (2). Many of the misidentified species were misidentified as 

species which did not exist in the plot. The summary of the frequency counts 

of weed species is in Table 5. The result using our adjusted estimator is in Table 

6. By simulation studies, the error rate is high in this case. Hence, the estimate 

of species richness using row data directly underestimates and the adjusted 

estimator should be applied to get the accurate estimate of species richness. 

Table 1.  

Comparison of species richness estimator for incidence data based on 500 

simulation data sets and 200 bootstrapping trials under random uniform (0, 1) 

model, with 𝑝̅= 0.51, 𝐶𝑉 = 0.53, 𝑆 = 100, 𝑆𝑠𝑢𝑏 = 40, 𝑇 = 5, and 𝑟 = 0.91. 
Mean 

error 

rate  

Estimated 

error 

rate  
Method  𝑺𝐨𝐛𝐬  𝑸𝟏  𝑸𝟐  𝑺  Bias  

Sample  

s.e  

Estimated  

s.e  

Sample 

RMSE  

0  0  True  85.2  15.3  17.3  91.37  -8.63  4.82  4.19  9.89  

0.053  0.058  Observed  81.5  13.9  15.8  87.22  -12.78  5.46  4.06  13.9  

    Adjusted  86.3  15.6  17.5  92.05  -7.95*  7.17  8.33  10.71†  

0.097  0.098  Observed  78.3  13.2  14.8  83.72  -16.28  5.29  3.95  17.12  
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    Adjusted  86.3  15.9  17.5  92.2  -7.8*  7.92  9.4  11.12†  

0.15  0.157  Observed  74  11.7  13.4  78.86  -21.14  5.24  3.75  21.78  

    Adjusted  86.8  16  17.6  92.89  -7.11*  10.33  10.2  12.54†  

0.199  0.209  Observed  70.7  10.3  12.7  74.71  -25.29  5.01  3.34  25.78  

    Adjusted  88.3  15.8  18.5  94.34  -5.66*  14.05  11.12  15.15†  
*Denotes the smaller bias. †Denotes the smaller RMSE.  

Table 2.  

Comparison of species richness estimator for incidence data based on 500 

simulation data sets and 200 bootstrapping trials under random uniform (0, 1) 

model, with 𝑝̅ = 0.51, 𝐶𝑉 = 0.53, 𝑆 = 100, 𝑆𝑠𝑢𝑏 = 40, 𝑇 = 20, and 𝑟 = 0.91.  

Mean 

error 

rate  

Estimated 

error 

rate  
Method  𝑺𝐨𝐛𝐬  𝑸𝟏  𝑸𝟐  𝑺   Bias  

Sample  

s.e  

Estimated  

s.e  

Sample 

RMSE  

0  0  True  95.3  4.1  3.9  98.8  -1.2  4.9  4.25  5.06  

0.053  0.055  Observed  91.2  3.9  3.6  94.8  -5.2  5.46  4.45  7.53  

    Adjusted  96.1  4.3  4  97.85  -2.15*  5.26  5.39  5.68†  

0.097  0.095  Observed  87.3  3.3  3.5  90.1  -9.9  5.15  3.76  11.15  

    Adjusted  95.8  4  4.1  97.1  -2.9*  6.52  5.72  7.14†  

0.15  0.151  Observed  82.9  3.1  2.9  85.61  -14.39  5.21  3.79  15.31  

    Adjusted  96.7  4.1  3.9  97.94  -2.06*  8.94  6.23  9.17†  

0.199  0.21  Observed  79.2  2.9  2.7  81.79  -18.21  5.25  3.66  18.95  

    Adjusted  98.8  4.4  4  100.5  0.46*  11.52  7.04  11.53†  
*Denotes the smaller bias. †Denotes the smaller RMSE 

Table 3. 

Comparison of species richness estimator for incidence data based on 500 

simulation data sets and 200 bootstrapping trials under a mixture model (0.8 × 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.1,0.3) + 0.2 × 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.4,1)), with 𝑝̅ = 0.29, CV = 0.7, 𝑆 = 100, 𝑆𝑠𝑢𝑏 = 40, 

𝑇 = 5, and 𝑟 = 0.67 

Mean 

error 

rate  

Estimated 

error 

rate  
Method  𝑺𝐨𝐛𝐬  𝑸𝟏  𝑸𝟐  𝑺    Bias  

Sample  

s.e  

Estimated  

s.e  

Sample 

RMSE  

0  0  True  72  32.4  19.8  94.98  -5.02  11.38  10.76  12.44  

0.053  0.056  Observed  69.7  30.4  19  90.91  -9.09  11.13  10.22  14.37  

    Adjusted  72.5  32.9  19.9  94.7  -5.3*  12.56  12.98  13.63†  

0.097  0.1  Observed  67.3  28.8  18.3  87.32  -12.68  11.12  9.91  16.87†  

    Adjusted  72.3  33.1  19.8  95.78  -4.22*  21.14  15.12  21.56  

0.15  0.155  Observed  64.7  26.4  17.7  82.27  -17.73  11.77  9.06  21.28†  

    Adjusted  72.7  33.1  20.1  96.26  -3.74*  21.81  17.28  22.13  

0.199  0.203  Observed  63.1  24.9  17.2  78.81  -21.19  9.08  8.36  23.06  

    Adjusted  73.9  33.9  20.3  98.02  -1.98*  22.62  19.58  22.71†  
*Denotes the smaller bias. †Denotes the smaller RMSE. 
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Table 4.  

Comparison of species richness estimator for incidence data based on 500 

simulation data sets and 200 bootstrapping trials under a mixture model (0.8 × 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.1,0.3) + 0.2 × 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.4,1)), with 𝑝̅ = 0.29, CV = 0.7, 𝑆 = 100, 𝑆𝑠𝑢𝑏 = 40, 

𝑇 = 20, and 𝑟 = 0.67. 

Mean 

error 

rate  

Estimated 

error 

rate  
Method  𝑺𝐨𝐛𝐬  𝑸𝟏  𝑸𝟐  𝑺  Bias  

Sample  

s.e  

Estimated  

s.e  

Sample 

RMSE  

0  0  True  97.8  7  11.9  100.25  0.25  2.56  2.43  2.57  

0.053  0.056  Observed  94.7  6.6  11.1  97.08  -2.92  2.98  2.37  4.17†  

    Adjusted  98.5  7.1  12  100.62  0.62*  4.55  5.8  4.59  

0.097  0.102  Observed  91.5  6.2  10.4  93.78  -6.22  3.72  2.34  7.25  

    Adjusted  98.6  7.2  12  100.76  0.76*  6.24  6.97  6.29†  

0.15  0.151  Observed  88.2  5.8  9.8  90.42  -9.58  3.69  2.31  10.27  

    Adjusted  98.5  7.2  12.1  100.62  0.62*  7.5  7.5  7.53†  

0.199  0.204  Observed  85.4  5.4  9.1  87.45  -12.55  4.2  2.3  13.24  

    Adjusted  99.9  7.3  12.2  102.08  2.08*  9.64  7.98  9.86†  
*Denotes the smaller bias. †Denotes the smaller RMSE.  

Table 5.  

Summary of the data set of weed species frequency counts at Soft Bridge county 

in the North of Taiwan, with 𝑇 = 12. 

Frequency  𝑸𝟏  𝑸𝟐  𝑸𝟑  𝑸𝟒  𝑸𝟓  𝑸𝟔  𝑸𝟕  𝑸𝟖  𝑸𝟗  𝑸𝟏𝟎  𝑸𝟏𝟏  𝑸𝟏𝟐  

Counts  18  9  12  8  6  4  1  4  3  3  2  3  

Table 6.  

Species richness adjustment for data set of weed species from Soft Bridge 

county in the North of Taiwan in farmland, with 𝑇 = 12, 𝑟̂ = 0.82, and 𝑒̂ = 0.14. 

Method  𝑺𝐨𝐛𝐬  𝑸𝟏  𝑸𝟐  𝑺  
Estimated  

s.e.  

Observed  74.0  19.0  9.0  92.4  11.27  

Adjusted  83.6  24.1  10.6  105.4  18.68  

 

4. Discussion and Conclusion 

Species richness is the simplest and most popular measure of biodiversity. 

The approach of estimating species richness is widely discussed due to its 

application in many ecological or agricultural issues mentioned by Carvalheiro 

et al. (2011) and Garibaldi et al. (2013). In the manuscript, we demonstrated 

the effect of species identity error while sampling in estimating species 

richness. When the mean probability that a species is misidentified into 

another species which belongs to the sampling plot is high, the observed 

richness and singleton richness will be seriously negative biased which 

implying most richness estimators’ serious underestimation even though 

increasing sampling units. Our simulations show that the adjusted richness 

estimator removes a large proportion of the negative bias under different 

settings of sampling units, species identity error, and species detection model. 

We suggest that the adjusted richness estimator for incidence data should be 
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applied to estimate species richness of the target region since species identity 

error occurs almost in every investigation of species.  
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