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Chapter 1: A Definition of Casual Effect

Casual Effect: Compare action A (two options for this action: taken, withheld)
For example, for a dichotomous treatment A, 1 to be treated and 0 to be not treated.

Potential Outcome: Let Y (1: death, 0: survival) be the outcome of interest. Y*=! Y*=0 be the
potential outcomes or called counterfactual outcome. Note that these are random variables.

Consistency: counterfactual outcome = observed outcome
i . . on w i '
Looks "obvious" but sometimes this assumption would be violated
Question: Why is this assumption needed since we definitely see the observed outcome?

Average Causal Effect: Since identify individual causal effect is not possible, turn into retreiving
'aggregated" causal effect. The ingredients needed here are:

« identify outcome of interest
e a=0vs. a=1to be compared
e Y=l vs. Y970 to be compared

This exists if: P(Y*=! =1) # P(Y*" = 1) or in general, E(Y*=!) #£ E(Y*=Y),
Note: Sharp causal null hypothesis is a test for no causal effect for any individual.

In this whole book, we have the following assumptions:
o Assumption of no interference: an individual’s outcome is independent of othersone’s treatment

e Assumption of no multiple versions of treatment: definition of a counterfactual outcome under
treatment value a also implicitly assumes that there is only one version of treatment value A = a.

These assumptions are all one of the stable unit treatment value assumptions (SUTVA).

Meausre of Causal Effect: To represent causal null,

1. PY*=!=1) - P(Y*"=1) =0 causal risk difference (average individual causal effect)

2. ig:;jg =1 causal risk ratio
3. ﬁgiéjﬁgiéjg; =1 causal odds ratio



These are called the effect measures.

Number Need to Treat (NNT): On average, NNT measures how many people we need to treat in

order to save "1" life. i.e. )

P(Ye=l =1) = P(Yo=0 = 1)

NNT =

Random Variability: The procedure to compute effect measures is implausible, and is from two
variability:

1. sampling variability

2. non-deterministic counterfactuals (stochastic): we then aim to measure the average counterfactual
outcome of population

E(Y*") = E[E(Y"|Oya(-))]
~ [ yaB[©y-(0)]

where Oy (+) is the individual-specific statistical distribution.
Note that until Chapter 10, we ignore those two random variabilities.

Causation versus association: Due to the fact that we can only observe one of the potential outcomes,
here we define the observed outcome Y from the treatment level A. Then the independent is defined
in terms of Y and A. Some equivalent definitions of independence are:

1. P[Y =1|A=1]—- P[Y =1|A=0] =0 associational risk difference

o PlY=1lA=1] _ 4

- Ply=1l4=0] associational risk ratio

3 P[Y=1|A=1]/P[Y=0|A=1] -1

- Ply=1]A=0)/Ply=o[A=0] — associational odds ratio

Thus, when treatment A and outcome Y are dependent or associated, we can see P[Y = 1|A = 1] #
P]Y = 1]A = 0]. These are called the association measures. In general, we quantify the association
using expectation E[Y =1|A = 1] # E[Y = 1]A = 0).

Most Important Idea of Chapter 1: Inferences about causation are concerned with what if questions
in counterfactual worlds, such as “what would be the risk if everybody had been treated?” and
“what would be the risk if everybody had been untreated?”, whereas inferences about association are
concerned with questions in the actual world, such as “what is the risk in the treated?” and “what is
the risk in the untreated?”



Chapter 2: Randomized Experiments

The reality of our "actual data": data are missing for the counterfactual outcome.
= Randomization ensures the missing values occur by chance and somehow controled.

Ideal Randomized Experiment:
e 10 loss to follow up
o full adherence to the assigned treatment
 single version of treatment
e double blind assignment

Exchangeability: The risk would be the same if the treatment and control group switched. i.e.,
PY*=1A=1)=PY*=1A=0)=PY*=1) ()

or Y 1 A for all a.
It is also called exogeneity in causal inference.
= In ideal randomized experiments, association is causation.

Note:

e Y% Il A does not have the same meaning of Y 1L A. i.e., if treatment has causal effect on the
outcome. = Y U A since treatment is associated with observed outcome.

« E[Y*|A = 1] = E[Y"|]A = 0]: mean exchangeability. For continuous, exchangeability =
mean exchangeability. But the other direction does not always true. The reason is that other
distributional parameters other than mean (variance) may not be independent of the treatment.

o A study is a randomized experiment even if exchangeability does not hold.

Marginally Randomized Experiments: use several randomized probabilities that depend on the value
of a variable (e.g. prognostic factor L)

Conditionally Randomized Experiments: use a single unconditional randomized probability common to
all individuals Note: Conditionally randomized experiments will not generally result in exchangeability.
If this experiment is simply combinations of marginally randomized experiments, then it is a marginally
randomized experiments, it is exchangeable. i.e.,

P(YO=1A=1,L=1)=P(Y*=1|A=0,L = 1)

or Y* Il A|L =1 for all a. For L =0, it also satisfies the formula above.
When Y* 1L A|L = for all values of [, we say Y* 1L A|L.

Note:

e conditional randomization — conditional exchangeability



» marginally randomization — marginal exchangeability, conditional exchangeability

Under marginal exchangeability:

causal ratio: I;gi;j; = igjliié; associational risk ratio holds since exchangeability

Way to compute causal risk ratio in conditional randomized experiment:
Recall: conditionally randomized experiment is combination of marginal randomized experiments.
", association is causation in each subset

1. f PY*='!=1L=1)/PY*°=1L=1)=PY =1L=1,A=1)/P(Y =1|L=1,A=0)
and P(Y*=! =1|L =0)/P(Y* " =0|L=0)=P(Y =1|L=0,A=1)/P(Y =1|L =0,A =0)
are different = stratification: effect modification by L or treatment effect heterogeneity across
levels of L.

2. Average causal effect: P(Y%=! =1)/P(Y*=0 =1)

PY*=1)=wy-PY*=1L=0)4w - PY*=1|L=1)
weighted average of stratum-specific risks
— PY*=1)=PY*=1L=0)-P(L=0)+P(Y*=1|L=1)-P(L=1)

Or in general,

P =1) =Y P(Y*=1|L =1)P(L =)

Under conditional exchangeability,

PY*=1)=YP(Y =1|L=1,A=a)P(L=1)

(Here just replace P(Y* = 1|L =1) with P(Y = 1|L =1,A=a))

If a counterfactual quantity can be expressed as a function of distribution (or probability) of observed
data, we say the quantity is identified (or identifiable).

Standardization

) YLP(Y=1L=1A=1)P(L=

1) )
P(Ye=0=1) S, P(Y=1L=1,A=0)P(L

l
l)

Standardized risk: the “counterfactual” risk that would have been observed had all the individuals in
the population been treated under conditional exchangeability

IP weights

W =1/f(A|L)



Example: A treated individual with L = [ receives weight An untreated individual with

1
P(A=1|L=l)"
L =1’ receives weight m.

Note:
o [P weighting: marginal probability of treatment A given covariate L.

« Standardization: probability of covariate L and conditional probability of outcome Y given A
and L.

o In discrete case, these two are equivalent under positivity and conditional exchangeability and

equal to B(Y?): B(Y®) = S E(Y|A=a,L=1)P(L=1)=E ["5¥]

If the number of individuals is multiplied times 2, then the number of deaths is also doubled.




Chapter 3: Observational Studies

Hesitation to empower observational associations with a causal interpretation is the lack of randomized
treatment assignment.

Strategy: Analyze as if treatment is randomly assigned conditional on covariate L. — viewed as a
conditionally randomized experiment if

1. consistency

2. exchangeability

3. positivity
holds.

From observational studies, causal inference requires data and identifiability conditions ((1)-(3)
mentioned above).

Exchangeability: In case of measured covariates (L), it must be conditional exchangeable (Y* 1L A|L)
within levels of L. This would not hold if there exist some unmeasured independent predictor U.

Positivity: For every combination of covariates, there must be a chance receiving any of the treatment.
ie. P(A=alL =1) >0 for all @ with P(L =1) > 0.

Note: Positivity is only required when the variable (L) is required for exchangeability.

Consistency: ¥ =Y = AY*=! 4 (1 — A)Y*=Y
1. precise definition of counterfactual outcome Y*
2. linkage of counterfactual outcomes to the observed outcomes

For (1), sometimes this assumption does not hold since although intervention a = 1 is well defined,
(V=1 is also well defined), sometimes each experiment implements a different version of a = 1. The
counterfactual outcome Y* will differ in the setting of different versions of a = 1.

Note: In reality, these interventions are very hard to perfectly specify — the average causal effect
varies across populations.

For (2), if it is an observational study, it is hard to have the data available. Then the well-defined
counterfactual outcome is not necessarily equal to the individual’s observed outcome.

Target trial framework: This involves:

 Specifying a hypothetical randomized trial (the target trial) that you would ideally conduct to
answer the causal question.



o Emulating this trial using the observational data.

This process forces investigators to explicitly define the key components of the study, such as eligibility
criteria, interventions, outcomes, and follow-up. By doing so, it helps clarify the causal question and
makes the necessary assumptions for consistency and exchangeability transparent. The framework
helps prevent analyses that correspond to impossible or nonsensical interventions.



Chapter 7: Counfounding (With Part of Ch6: Graphical Representa-
tion of Causal Effects)

Counfounding: In obervational studies, treatment may be determined by many other factors.

TN

L A Y

From the image above, we can see the presence of the common cause L creates an additional source of
association between the treatment A and the outcome Y, which we refer to as confounding for the
effect of A on Y.

Note: Due to counfounding, associational risk ratio does not equal the causal risk ratio. i.e.,
association is not causation.

Collider: The definition of collider is path-specific: L is a collider on the path A« U,— L+ U;—Y, but
not on the path A« L<+U;—Y in the following graph:

Note:

o Causal graphs theory shows that indeed conditioning on a collider opens the path, which was
blocked when the collider was not conditioned on.

o There is an arrow L—A. The presence of this arrow creates an open backdoor path A« L+U;—Y
because U; is a common cause of A and Y, and so confounding exists. Conditioning on L would
block that backdoor path but would simultaneously open a backdoor path on which L is a
collider.

D-separation: We define a path to be either blocked or open according to the following graphical rules:

1. If there are no variables being conditioned on, a path is blocked if and only if two arrowheads on
the path collide at some variable on the path

2. Any path that contains a non-collider that has been conditioned on is blocked
3. A collider that has been conditioned on does not block a path
4. A collider that has a descendant that has been conditioned on does not block a path

Backdoor Criterion: A set of covariates L satisfies the backdoor criterion if all backdoor paths
between A and Y are blocked by conditioning on L and L contains no variables that are descendants



of treatment A.

Note:

o Under faithfulness and a further condition, conditional exchangeability Y* 1L A|L holds if and
only if L satisfies the backdoor criterion.

o The two settings in which the backdoor criterion is satisfied are
— No common causes of treatment and outcome: no backdoor paths that need to be blocked
— No unmeasured confounding
Two structural sources of lack of exchangeability:

« Confounding (any systematic bias that would be eliminated by randomized assignment of A):
the presence of common causes of treatment and outcome—which creates an open backdoor path

o Selection bias: conditioning on a common effect—which may open a previously blocked backdoor
path

The traditional approach to handling confounding is flawed because it relies on statistical associations
rather than causal knowledge. This approach defines a confounder as a variable that is:

1. Associated with the treatment
2. Associated with the outcome (conditional on the treatment)
3. Not on the causal pathway between treatment and outcome (A — Y)

For the graph below, where this traditional definition incorrectly identifies a non-confounder as a
confounder. In this case, adjusting for the variable (L) would actually introduce a new bias, called
selection bias, by opening a previously blocked backdoor path.

Uy
Ny

L

Us

Structural Approach: A structural approach starts by explicitly identifying the sources of confound-
ing—the common causes of treatment and outcome that, were they all measured, would be sufficient
to adjust for confounding—and then identifies a sufficient set of adjustment variables.

Exchangeability is translated into graph language as the lack of open paths between the treatment A and outcon
other than those originating from A, that would result in an association between A and Y.

Single-world Intervention Graphs (SWIGs): a graph that represents a counterfactual world created
by a single intervention.



For example, the graph below represents represents a world in which all individuals have received an
intervention that sets their treatment to the fixed value a:

L——Ala ya

/

U

Note: The key idea is that if the counterfactual outcome (Y'*) is d-separated from the natural treatment
value (A) given a set of variables (L), then conditional exchangeability holds and confounding is
eliminated.

Confounding Adjustment: Methods that adjust for confounders L (a set of non-descendants of
treatment A that includes enough variables to block all backdoor paths from A to Y') can be classified
into two broad categories:

o G-methods: Standardization, IP weighting, and g-estimation: These methods (the "g" stands for
"generalized") exploit conditional exchangeability given L to estimate the causal effect of A on Y
in the entire population or in any subset of the population. (assume if backdoor paths involving
the measured variables L did not exist)

« Conventional methods for stratification-based adjustment: Stratification (including restriction)
and matching. These methods exploit conditional exchangeability given L to estimate the
association between A and Y in subsets defined by L.

Note: All the above methods require conditional exchangeability given L. However, confounding
can sometimes be handled by methods that do not require conditional exchangeability. Moreover,
achieving conditional exchangeability may be an unrealistic goal in many observational studies but
expert knowledge about the causal structure can be used to get as close as possible to that goal.
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Chapter 8: Selection Bias

Only focus on selection bias under null: conditioning on common effects

T

A Y C

treatment outcome common effect

For example: A study to estimate the effect of folic acid supplements given to pregnant women shortly
after conception on the fetus’s risk of developing a cardiac malformation during the first two months
of pregnancy.

o A: folic acid supplement

« Y: cardiac malformation (1: yes, 0: no)

e (': death before birth

Source of association of treatment and outcome:

1. open path: A - Y

2. open path: A — C <« Y if condition on C' (association between A and Y')

Due to selection bias, association/risk ratio # causal risk ratio = association # causation

Study of HIV infection

L:
A= C:

L A

\/

C Y

-

: antiretroviral treatment

A
Y:
U
C

3-year risk of death

: high level of immunosuppression (1: yes, 0: no) (unmeasured variable)

: censored or not (1: yes, 0: no)

symptoms, CD4 count etc

treatment has side effects so patients want to dropout

(' analysis is restricted to those who are remain uncensored
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U — Y: individuals with U = 1 have a greater risk of death.
Based on d-separation, conditioning on C' opens path, thus association flows from A to Y.

C': common effect of A and L (rather than Y)
Note: The bias is the result of selection on a common effect of two other variables in the diagram.

Selection Bias: Bias arises from conditioning on a common effect of two variables:
1. treatment or cause of treatment
2. outcome or cause of outcome.

Selection Bias Examples:
1. Differential loss to follow-up: informative censoring.

2. Missing Data Bias: restricting the analysis to individuals with complete data (C' = 0) would
result in bias (might be some reason why they are reluctant to provide information or miss study
visits).

3. Healthy Worker Bias

4. Self-selection Bias (Volunteer Bias)

5. Selection affected by treatment received before study entry
Note:

1. Randomization protects against confounding, but not against selection bias when the selection
occurs after randomization.

2. No bias arises in randomized experiments from selection into the study before treatment is
assigned.

Comparison of Selection Bias and Confounding: Statisticians and econometricians often use the term
“selection bias” to refer to both types of biases

» confounding: selection of individuals into analysis
 selection bias: selection of individuals into treatment

which would lead to lack of exchangeability.

Adjust of Selection Bias: IP weight could be used to adjust both confounding and selection bias.
o confounding: W4 = 1/f(A|L)
o selection bias: WY =1/P(C = 0|A, L)

—> construct pseudo-population of the same size as the original study population but in which
nobody is lost to follow-up.

1. exchangeability

12



2. positivity
3. sufficiently well-defined intervention

Note: IP weighting appropriately adjusts for selection bias because this approach is not based on
estimating effect measures conditional on the covariate L, but rather on estimating unconditional effect
measures after reweighting the individuals according to their treatment and their values of L.

13



Chapter 12: IP Weighting and Marginal Structure Models

At start, the notations are defined as:
e L: covariates
e Y: outcome

e A: treatment

An Example

Aim: Estimate ATE of smoking cessation (treatment A) on weight gain (outcome Y).

Difficulty

ATE = E[Y*=!] — E[Y*™] (a = 1 is quit smoking, a = 0 is don’t quit), which is different from what
we have from the data, the associational difference: E[Y|A = 1] — E[Y|A = 0]

Why have this difference?
Age is a confounder of the effect A — Y.

e Older people gain less weight than younger people no matter they quit smoking or not.

o Age need to adjust before analysis.

How do we adjust?

IP Weighting: Creates a pseudo-population where the contribution of each individual is re-weighted
so that the distribution of L is independent of A = Try to construct a dataset mimic randomized
experiment.

e ALL

o EilY|A=a]|=Y,E[Y|A=a,L=1P(L=1) (Pseudo-population mean equals to the standard
mean in the actual population)

Note that these properties are still true if conditional exchangeability (Y* L A|L) does not hold. If
conditional exchangeability holds, then:

e mean of Y* is the same in two populations.
 unconditional exchangeability (no confounding) holds in pseudo-population. (Y* 1 A)
e E(Y?*) =EL[Y|A=d

e Association is causation in pseudo-population

How can we estimate the IP weights?

Estimate weights via modeling. The individual-specific IP weights for treatment A are: W4 = m.

For non-parametric estimation of W4, if we have high-dimensional L, obtaining a meaningful stratum-
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specific estimate of W4 can be very difficult. For a parametric approach, we can fit a logistic
regression:

logit(P(A = 1|L)) = L'

After we have the estimation of TP weights, our next step is to compute E,,[Y|A = 1] — E,,[Y|A = 0]
in the pseudo-population.

The way to estimate E,s[Y|A = 1] — E,5[Y|A = 0] is to fit a saturated linear mean model:

E[Y|A] = 6, + 6, A

A

by WLS (Weighted Least Squares) with weights W:

_ ) P(A=1]L
W = ( 1\)

. { ! for quitters (A=1)
1-P(A=1|L)

for non-quitters (A=0)

The target is to minimize R
> WilY; — (6o + 0, A)))°

Note: This [P weighted mean for treatment a is equal to the counterfactual mean under positivity and
exchangeability. i.e.,

o

E[Y?] will be estimated by a consistent estimator by the Horvitz-Thompson approach [HT52]:

e[|

We need to assume f(A|L) is known. However, the Hajek estimator [H4j71] is preferred [LDO04], which
is defined as:

2 1]

B[ 5as]

It is preferred since it can be guaranteed to lie between 0 and 1 for dichotomous Y, even if f(A|L) is
unknown and replaced by f (A|L). If positivity is not held, the difference between Héjek estimators
does not have a causal interpretation. Also, the variance is needed to construct a 95% C.I. There are
normally three ways to do it:

1. Nonparametric bootstrapping (time-consuming, computation cost)

2. Derive variance estimator under statistical theory (not generally available)
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3. Robust Variance Estimator: Standard option in most statistical software packages (Used for
independent working correlation in GEE). conservative.

For example, if weight = 2, it means we form 2 copies of the original study population to produce the
pseudo-population (one for treated and the other for untreated).

Better approach for obtaining weights?

Stabilized weights which is defined as:

The properties are as follows:
o Can have narrower 95% C.I.
o This superiority can only occur when the model is not saturated.

» In data analysis, one should check whether SW has a mean of 1. If not, model misspecification
or possible violations, or near violations, of positivity may be the issue.

Review: If the positivity assumption does not meet, it will signal these two problems:

1. Lack of Overlap: there’s little to no empirical overlap between the treated and control groups,
making causal comparison tenuous.

2. Model Misspecification: A misspecified propensity score model might generate extreme predicted
probabilities.

How can we diagnose whether the IP weight estimation is good?

[AS15] suggest a framework for how we can use the IP weights and evaluate whether we have a balanced
dataset or not and has not appear in the previous works.

1. Identify Confounders: draw DAGs, review literature to ensure conditional exchangeability

2. Specify Propensity Score Model: prior evidence show that it is preferable to include either
prognostically important variables or confounding covariates in the model

3. Calculate Weights & Diagnose Weights: check the positivity assumption
e The mean of stabilized weights should be close to 1.
o Identify the maximum and minimum values of the weights.

4. Access Covariate Balance:

(a) Quantitative: calculate standardized mean difference (SMD), which is defined as

jtreated - fcontrol
SMD =

2 2
Streated—"_scont'rol
\/ 2
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1

, where Zyeight = %wj’ and sfueight = % S wi(x; — Tupeigne)? for all covariates and
interactions (note that SMDs is not influenced by sample size compare to t-test) and present
it in a table such as in [Table 1] or absolute standardize difference graph as in [Figure 1].

(b) Qualitative: graph boxplots and eCDF plots to inspect the distributional balance. For
eCDFs, we can use Kolmogorov-Smirnov (K-S) test statistic to have a formal comparison of
distributions. Example graphs are in [Figure 2].

5. Evaluate Balance and Iterate
6. Estimate Effect
7. Estimate Variance

Note: For the K-S test in detecting distributional difference, we use only the descriptive statistic rather
than the p-value from the formal hypothesis testing. The reasons are:

o p-values are heavily influenced by sample size

« p-value answers questions on the hypothetical population, but in here we only cares about the
specific dataset

o K-S test statistic can be computed on the weighted dataset, but p-value of this test assume you
have an unweighted dataset

Figure 1: Absolute Standardized Mean Differences Graph using [Lal.86].

Covariate Balance

distance | ®
ageq{ |®
educ [ ]
race_black 4 ®
Sample
race_hispan 1 ® P
Unadjusted
race_whiteq| |® o Adjusted
married 4 ®
nodegree - ®
ref4{ @
re75 L
0.0 05 10 15
Absolute Standardized Mean
Differences

Marginal Structural Model (MSM)
e Model: E(Ya) = BO + ﬁla
— We can have ATE = E(Y*=!) — E(Y*=°) = 33,
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Figure 2: Box Plots and CDF Graphs to Show Pre- and Post Weighting [AS15]

Boxplot in unweighted sample

Boxplot in weighted sample (simple)

Boxplot in weighted sample (complex)
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Table 1: Covariate Balance Before and After Inverse Probability of Treatment Weighting (Hypothetical

Data)

Covariate Unweighted Weighted

Treated  Control SMD Treated Control SMD
Age (years), mean (SD) 55.2 (8.1) 51.5(9.2) 0.42 53.1(8.8) 53.0(8.9) 0.01
Female, % 65.0 50.0 0.30 58.1 57.9 0.00
Prior MI, % 20.0 10.0 0.28 14.5 14.6 —0.00
BMI, mean (SD) 28.1 (4.5) 26.5(4.8) 0.34 27.2(4.6) 27.3 (4.7) —0.02
Higher-Order Terms
Age? 3112.4 2736.5 0.39 2900.1 2888.7 0.01
Age x BMI 1551.1 1364.8 0.35 1449.6 1452.3  —0.00

— In IP weighting, we are fitting a weighted least square of E(Y|A) = 6y + 6, A to the
pseudo-population

*x Under assumption, association is causation in the pseudo-population

% 0 has the same meaning as [3;

x Having a consistent 0, of the association parameter in the pseudo-population is also a
consistent estimator of causal effect 3y in the population.

— Note that this is a saturated model.

« For continuous treatment (or at least more than two treatment values), we need to fit a
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non-saturated marginal structural mean model

x Downside of IP weighting approach: for constructing pseudo-population, we need to
estimate SW4 = f(A)/f(A|L). For dichotomous treatment A, f(A|L) can be estimated
by logistic regression. However, for continuous treatment A, estimating pdf f(A|L) is
hard. Although you can assume the distribution of f(A|L), the effect estimate will be
sensitive. But still in the [RHBO00], they suggest to assume to be normal distribution.

— MSM model on dichotomous outcome

log @Egzzoi) —ap+aa, ac{0,1}

where a = 1 be getting heart death and a = 0 be no heart death. exp(«ay): causal odd ratio
of death for quitting smoke vs not quitting smoke.

o Effect modification

— May want to add covariates V' in a marginal structural model to access effect modification.

E(Y*|V) = Bo+ pra+ BVa+ B3V

— IP weighting based on SW4(V) = fc((‘j"‘g)) generally gives smaller C.I. (f(A|V) is estimated

by logistic model by adding V' as covariate)

— Should choose V' only for the investigator’s substantive interest

x If the investigator believe V is a “effect modifier" and has greater substantive interest in
the causal effect of treatment within levels of the covariate V' than in the population.

o Time-Dependent Treatment MSM

- A= (A}, Ay, ..., Ag): observed treatment history vector ; @: potential treatment history
vector ; L: covariates history matrix

— Assume no unmeasued confounders exists.

— For time-dependent treatments, the counterfactual is Yz (the outcome under treatment
history @). An MSM for this might be:

logit[P(Yz = 1)] = By + frcum(a)

where cum(@) = Y1, ay is the cumulative treatment. This is an unsaturated (parsimonious)
model assuming the causal effect depends only on the total cumulative treatment.

— For the association model, we can use the similar formula:
logit[P(Y = 1|A =a)] = By + Bycum(a)
with the stabilized weights to be:

s P(Ag = aki|Ap—1 = Q1))

st:HP

k=0 (A = akz’|zk—1 = ﬁ(k—m,zk = Zki)

— After adjusting for treatment A (treatment is now not confounded), 8 = ]
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o Censoring and Missing Data

— No new idea is required since we can conceptually treat censoring as just another time-
varying treatment. We can calculate the Inverse-Probability-of-Censoring Weight (IPCW),
swiT . Since the outcome Y is unobserved unless the subject does not drop out, our weighted
model fit is restricted to subjects who were not censored:

L P(Cr=0|Chq =0, 441)

sw) = — DR
ig) P(C, =0|Ck-1 =0, A1, L)

And the final weight for each subject is the product of the two: swyina = sw; x sw;t . The
final MSM is then fit using this combined weight.

20



Chapter 13: Standardization and the Parametric G-Formula

For estimating the average treatment effect (ATE) E[Y*=!] — E[Y*=Y], there are two ways to calculate:
1. IP weighting (Chapter 12)
2. Standardization (This chapter)

Under exchageability and positivity conditional on the variables L, we have the property of association
equals to causation. For discrete treatment L, we can calculate the standardized mean in the uncensored
who received treatment a:

EY* ==Y E[Y|[A=a,C=0,L=1{P[L=I]

and for continuous L, we can calculate the standardized mean in the uncensored who received treatment
a:
E[yee=0] = /E[Y\A = 4,0 =0,L = dF(])

Estimating E[Y'|A = a,C = 0, L =[] would not be hard by non-parametric approach if L is discrete
and the outcomes of L are not too many. If we have a high-dimensional data with many confounders,
some of them with multiple levels, the non-parametric estimation would be hard and not accurate.

Instead, we can model E[Y'|A = a,C = 0, L =[] with a parametric model such as linear regression:
Y:ﬁo‘i‘ﬁlA—i‘ﬁQL—i‘G
and have the the estimate E[Y|A = a,C' = 0, L = ] for each level of L.

However, we don’t have P[L = []. Fortunately, we have instead compute the average:

1

Ry =] = Z [Y[A=a,C=0,Lj]

3 \

g-formula: standardization (plug-in g-formula), parametric g-formula

IP Weighting or Standardization?

A question would directly pop out that since IP weighting and standardization are two ways to estimate
the ATE and has similar result, which one would we choose? First we need to understand the difference
between IP weighting and standardization:

[P weighting models P[A = a,C = 0|L], which we can estimate by fitting logistic regressions to
get the estimates of P[A = a|L] and P[C = 0|A = a, L.

« Standardization models E[Y|A = a,C = 0, L], which we can estimate by fitting the linear
regression.

All practical models contain some degree of non-ignorable misspecification, which inevitably introduces
bias. However, the bias resulting from misspecification in IP weighting and standardization is unlikely
to be of the same magnitude or direction. Therefore, we should compare the estimates from both IP
weighting and standardization simultaneously to assess the robustness of the findings.
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« Big difference between those results will give us alert of the presense of model misspecification.

o Small difference between those results cannot garantee anything, but will be assuring us of the
robustness. (Low probability of model misspecification at the same time for both IP weighting
and standardization.)

Doubly Robust Estimator: A method that only requires a correct model for using IP weighting
(modeling treatment A) or standardization (modeling outcome Y'). Under the usual identifiability
assumptions, a doubly robust estimator consistently estimates the causal effect if at least one of the two
models is correct (and one need not know which of the two models is correct). The whole procedure
would be as follows:

1. Estimate the IP weight W4 = 1/f(A|L)

2. Fit an outcome regression model with a canonical link for E[Y'|A, L, R] that adds the covariate
R, where R=WAif A=1land R=-W4if A=0

3. Calculate the average causal effect by the difference of the two estimators

Augmented IP Weighted Estimator: For IP weighting method, we have the estimator in the form of
E [%}, where 7(L) = P[A = 1|L]. Also, For the standardization method, we have the estimator in
the form of E[b(L)], where b(L) = E[Y|A =1, L]. The augmented IP weighted estimator is the average

of the two estimators:

£ on = L5 [ + 52 (- i)
- [ﬁ) } (wfw ) 1> E(LJ}

Under exchageability and positivity,

B *=on BV 4 B [n(0) (-5 - =055 ) 000) - (0.

where 7*(L) and b*(L) are the probability limits of #(L) and b(L). It follows that doubly robust
estimator is (asymptotically) unbiased when either the parametric outcome model is correct [so
b*(L) = b(L)] or the parametric treatment model is correct [so 7*(L) = 7(L)|. Furthermore, we do
not need to know which one of the two models is correct. Note that the bias of 7(L) and b(L) can be
small by using machine learning estimators.

Cautious for the estimating results

Causal analysis using observational data is best conducted by explicitly modeling a hypothetical target
trial. Even when limiting the inference to the population under study (not transporting the results),
the validity of the causal estimate requires several conditions:

o Identify the conditions of exchangeability (check confounding, selection bias), positivity (structural
positivity) and consistency (check multiple version of treatments).

o Identify all the variables used in the analysis should be correctly measured (check measurement
error, confounders).

o Check model misspecification, this is similar effect as measurement error in the confounders.
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Structural Positivity: If the analytical model is perfectly specified, parametric or double robust
methods can smooth over strata with structural zeros ("extrapolation"), the lack of positivity part in
the dataset can be ignored. However, this introduces bias and reduces the standard error. Note that
we use model to do extrapolation not because we lack enough data, but because we want to estimate a
quantity that cannot be identified even with an infinite amount of data.

Data Analysis

The dataset we have is from National Health and Nutrition Examination Survey Data I Epidemiologic
Follow-up Study (NHEFS). Our goal is to estimate the average causal effect of smoking cessation (the
treatment) on weight gain (the outcome).

The variables are as follows:
o gsmk: quit smoking between 1st questionnaire and 1982, 1:yes, 0:no
o sex: 0: male 1: female
o race: (: white 1: black or other in 1971
e age: age in 1971

e education: amount of education by 1971: 1: 8th grade or less, 2: hs dropout, 3: hs, 4:college
dropout, 5:college or more

» smokeintensity: number of cigarettes smoked per day in 1971
« smokeyrs: years of smoking

o exercise: in recreation, how much exercise? in 1971, 0:much exercise, 1:moderate exercise, 2:little
Or Nno exercise

o active: in your usual day, how active are you? in 1971, O:very active, 1:moderately active,
2:inactive

o wt71: weight in kilograms in 1971

nhefs <- read.csv('"nhefs.csv")
nhefs$cens <- ifelse(is.na(nhefs$wt82), 1, 0)

fit <- glm(wt82_71 ~ gsmk + sex + race + age + I(age*age) + as.factor(education)
+ smokeintensity + I(smokeintensity*smokeintensity) + smokeyrs
+ I(smokeyrs*smokeyrs) + as.factor(exercise) + as.factor(active)
+ wt71 + I(wt71*wt71) + gsmk*smokeintensity, data=nhefs)

summary (fit)

#i#

## Call:

## glm(formula = wt82_71 ~ gsmk + sex + race + age + I(age * age) +

#H as.factor(education) + smokeintensity + I(smokeintensity *

## smokeintensity) + smokeyrs + I(smokeyrs * smokeyrs) + as.factor(exercise) +
## as.factor(active) + wt71 + I(wt71 * wt71) + gsmk * smokeintensity,

#t data = nhefs)
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it
## Coefficients:

H## Estimate Std. Error t value
## (Intercept) -1.5881657 4.3130359 -0.368
## gsmk 2.5595941 0.8091486 3.163
## sex -1.4302717 0.4689576 -3.050
## race 0.5601096 0.5818888 0.963
## age 0.3596353 0.1633188 2.202
## I(age * age) -0.0061010 0.0017261 -3.534
## as.factor(education)? 0.7904440 0.6070005 1.302
## as.factor(education)3 0.5563124 0.5561016 1.000
## as.factor(education)4 1.4915695 0.8322704 1.792
## as.factor(education)5 -0.1949770 0.7413692 -0.263
## smokeintensity 0.0491365 0.0517254 0.950
## I(smokeintensity * smokeintensity) -0.0009907 0.0009380 -1.056
## smokeyrs 0.1343686 0.0917122  1.465
## I(smokeyrs * smokeyrs) -0.0018664 0.0015437 -1.209
## as.factor(exercise)l 0.2959754 0.5351533 0.553
## as.factor(exercise)? 0.3539128 0.5588587 0.633
## as.factor(active)l -0.9475695 0.4099344 -2.312
## as.factor(active)?2 -0.2613779 0.6845577 -0.382
# wt71 0.0455018 0.0833709 0.546
## I(wt71 * wt71) -0.0009653 0.0005247 -1.840
## gsmk:smokeintensity 0.0466628 0.0351448 1.328
##H ——

## Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1
##

## (Dispersion parameter for gaussian family taken to be 53.5683)
##

## Null deviance: 97176 on 1565 degrees of freedom

## Residual deviance: 82763 on 1545 degrees of freedom

## (63 observations deleted due to missingness)

## AIC: 10701

##

## Number of Fisher Scoring iterations: 2

# create a dataset with 3 copies of each subject
nhefs$interv <- -1 # 1st copy: equal to original one

interv0 <- nhefs # 2nd copy: treatment set to 0, outcome to missing
intervO$interv <- 0

intervO$gsmk <- 0

intervO$wt82 71 <- NA

intervl <- nhefs # 3rd copy: treatment set to 1, outcome to missing
intervi$interv <- 1

intervi$qgsmk <- 1

intervi$wt82 71 <- NA

Pr>Itl)
.712756
.001590
.002328
.335913
.027809
.000421
.193038
.317284

. 792589
. 342287
.291097
.143094
.226830
.580298
.526646
.020935
. 702647
.585299

O O O O O O OO O OO OO0 OOOOo oo oo

. 184463

* %k
* %

*kkk

.073301 .

.066001 .
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onesample <- rbind(nhefs, interv0O, intervl) # combining datasets

# linear model to estimate mean outcome conditional on treatment and confounders
# parameters are estimated using original observations only (nhefs)

# parameter estimates are used to predict mean outcome for observations with

# treatment set to 0 (interv=0) and to 1 (interv=1)

std <- glm(wt82_71 ~ gsmk + sex + race + age + I(age*age)
+ as.factor(education) + smokeintensity
+ I(smokeintensity*smokeintensity) + smokeyrs
+ I(smokeyrs*smokeyrs) + as.factor(exercise)
+ as.factor(active) + wt71 + I(wt71*wt71) + I(gsmk*smokeintensity),
data=onesample)
onesample$predicted meanY <- predict(std, onesample)

mean (onesample [which(onesample$interv==0),]$predicted_meany)

## [1] 1.660267

mean (onesample [which(onesample$interv==1),]$predicted_meany)

## [1] 5.178841
E[Ye=1¢=0] i 5178841 and E[Y*=1¢=0] is 1.660267. Thus, the causal effect of 3.5kg.

Simulation of Augmented IP Weighting Estimator

set.seed(42)
n_sims <- 1000
n_sample <- 500
true_ate <- 2

results <- matrix(NA, nrow = n_sims, ncol = 6)
colnames (results) <- c("IPW Wrong", "ST Wrong", "DR(C,W)", "DR(W,C)", "DR Both Cor", "DR Bot

calc_dr <- function(Y, A _obs, pi_hat, b_al_hat, b_a0O_hat) {
drl <- mean( (A_obs * Y) / pi_hat - ((A_obs - pi_hat) / pi_hat) * b_al hat)

dr0 <- mean( ((1 - A_obs) * Y) / (1 - pi_hat) + ((A_obs - pi_hat) / (1 - pi_hat)) * b_a0_l

return(drl - dr0)
}

for (i in 1:n_sims) {

# === A. Data Generation (The "Truth'") ===
# Confounder X ts N(0,1)
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X <- rnorm(n_sample, mean = 0, sd = 1)

# True $\pi$: Depends on X AND X~2 (Non-linear)
# logit (P(T=1)) = -0.5 + 0.5%X + 0.2*X°2
z<--0.5+05*X+0.2* (X°2)

true pi <- 1 / (1 + exp(-2))

A obs <- rbinom(n_sample, 1, true_pi)

# True $b(L)$: Depends on A, X, AND X2

#Y =2%¥A + 1 + 24X + 1.5¥X°2 + error

# The coeffictient of T 2s 2, so True ATE = 2

Y<- 2% Aobs+1+2x*X+ 1.5 % (X"2) + rnorm(n_sample)

# Create a data frame
df <- data.frame(Y =Y, T = A_obs, X = X, X_sq = X72)

# === B. Model Fitting ===

# 1. \pi Estimation (IP Weighting)

# Wrong Model: Only sees X (misses X°2)

fit_ps_wrong <- glm(T ~ X, data = df, family = binomial)
ps_wrong <- predict(fit_ps_wrong, type = "response")

# Correct Model: Sees X and X°2
fit_ps_correct <- glm(T ~ X + X_sq, data = df, family = binomial)
ps_correct <- predict(fit_ps_correct, type = "response")

# 2. b(L) estimation (Standardization)

# Wrong Model: Only sees X (misses X°2)
fit_or_wrong <- 1lm(Y ~ T + X, data = df)
mul_wrong <- predict(fit_or_wrong, newdata
mu0_wrong <- predict(fit_or_wrong, newdata

1)
0))

transform(df, T
transform(df, T

# Correct Model: Sees X and X°2

fit_or_correct <- 1m(Y ~ T + X + X_sq, data = df)

mul_correct <- predict(fit_or_correct, newdata = transform(df, T
mu0_correct <- predict(fit_or_correct, newdata = transform(df, T

1)
0))

# Scenario 1: IPW (Wrong Model)

# Formula: mean( TY/e - (1-T)Y/(1-e) )

ipw_est <- mean( (df$T * df$Y) / ps_wrong - ((1 - df$T) = df$Y) / (1 - ps_wrong) )
results([i, 1] <- ipw_est

# Scenario 2: Standardization (ST) (Wrong Model)
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# Formula: mean( mul - mu0O )
or_est <- mean(mul_wrong - muO_wrong)
results[i, 2] <- or_est

# Scenario 3: DR (IP Correct, ST Wrong)
results[i, 3] <- calc_dr(df$Y, df$T, ps_correct, mul_wrong, muO_wrong)

# Scenario 4: DR (IP Wrong, ST Correct)
results([i, 4] <- calc_dr(df$Y, df$T, ps_wrong, mul correct, muO_correct)

# Scenario 5: DR (Both Correct)
results[i, 5] <- calc_dr(df$Y, df$T, ps_correct, mul_correct, muO_correct)

# Senario 6: DR (Both Wrong)
results[i, 6] <- calc_dr(df$Y, df$T, ps_wrong, mul wrong, mu0_wrong)

# Calculate Bias and MSE

summary_table <- data.frame(
Estimator = colnames(results),
Mean Estimate = colMeans(results),
Bias = colMeans(results) - true_ate,
MSE = colMeans((results - true_ate) "2)

rownames (summary_table) <- c()

print (summary_table, digits = 4)

## Estimator Mean_Estimate Bias MSE
## 1 IPW Wrong 2.640 0.639562 0.493290
## 2 ST Wrong 2.535 0.535135 0.332257
## 3 DR(C,W) 2.016 0.016078 0.024198
## 4 DR(W,C) 2.004 0.003938 0.009011
## 5 DR Both Cor 2.003 0.003109 0.009054
## 6 DR Both Wrong 2.616 0.616402 0.461804
boxplot (results,
main = "Performance: IPW vs ST vs DR under Misspecification",

ylab = "Estimated ATE",
col = c("salmon", "salmon", "lightblue", "lightblue", "lightgreen", "purple"),
names = c("IPW Wrong", "ST Wrong", "DR(C,W)", "DR(W,C)", "DR(C,C)", "DR(W,W)"),
las = 1,
cex.axis = 0.8) # Horizontal labels, slightly smaller text

abline(h = true_ate, col = "red", lwd = 2, 1ty = 2)
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