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Review Bi-Gram Model



Bi-Gram Model

A Very Simple Language Model

* Intuition: We only predict the next word based on the previous word.

* Model the predicted probability of a certain word based on a given word.

P(c;|c;,_y)

¢; is the word in the 1 position.

» Here we give an example of a sentence:

<s>| Al could finally be introduced into practice in general tasks|<e>

Start Token End Token



Bi-Gram Model

A Very Simple Language Model

ould finally be introduced into practice in general tasks <e>



Bi-Gram Model

A Very Simple Language Model

<s>|Al could finally be introduced into practice in general tasks <e>
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Bi-Gram Model

A Very Simple Language Model

<s> Al could finally be introduced into practice in general




Bi-Gram Model

A Very Simple Language Model

- What if the features cannot be extracted only by one layer of neural network?
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Deep Neural Network



What Deeper?

» Deep Neural Networks (DNN) extract text semantics meanings on a deeper level.

Deep neural network
Input layer Multiple hidden layers Output layer

https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
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Word Embedding

Word Representation

» From all the experiments above, we all use one-hot encodings.
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Word Embedding

Word Representation

* However, we cannot extract the meaning between those two words.
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Word Embedding

Word Representation

» Word embedding uses a vector representation which could indicate the semantic
relationship between words.

A Italy

Germany = Rome
man walked == Berlin
O ‘ Turkey \
T | Ankara
O Sy woman ~
kin *‘ O S Russia Moscow
g .~ *. wvalking | O Canada Ottawa
queen - - Japan Tokyo
g O Vietnam Hanoi
swimming China Beijing
Male-Female Verb tense Country-Capital

https://leemeng.tw/find-word-semantic-by-using-word2vec-in-tensorflow.html
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Word Embedding

Advantages using word embeddings

» Find the semantic relationship between words.

» Map a high-dimensional one-hot encoding vector to a lower-dimensional word
embedding vector

One-hot encoding A 4-dimensional embedding

N

> QL \QQ’

C @ o 9o X cat => 12 | 01 | 43 | 32
the => O(0|0|0 |1 mat => | o4 | 25 | 09 | 05
cat => 110{0[0]0 on => 21 | 03 | 01 | 04
sat => |[0/0|0|1|0

https://www.tensorflow.org/text/guide/word_embeddings
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How to Train Word Embedding?



Deep Neural Network
Word embedding layer is in the hidden layer of DNN
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Let’s do this in Colab!



https://colab.research.google.com/drive/11EkuyV3KWcd-nTBr5sTh2PMosIUjT5HW?authuser=1

Questions

- What if we have a massive dataset that cannot fit in memory?
» How can we compute gradient with more than one hidden layer?
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Abstract

A goal of statistical language modeling is to learn the joint probability function of sequences of
words in a language. This is intrinsically difficult because of the curse of dimensionality: a word
sequence on which the model will be tested 1s likely to be different from all the word sequences seen
during training. Traditional but very successful approaches based on n-grams obtain generalization
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Further Reading

Efficient Estimation of Word Representations in Vector Space (Word2Vec)

Efficient Estimation of Word Representations in
Vector Space
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tmikolovl@dgoogle.com kaichen@google.com
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Abstract

We propose two novel model architectures for computing continuous vector repre-
sentations of words from very large data sets. The quality of these representations
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Transfer Learning



Transfer Learning

Use Pre-trained Model in other tasks
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https://www.mdpi.com/1424-8220/23/2/570
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Transfer Learning

Use Pre-trained Model in other tasks

Original Task

Pro—trapmed  Hearg L
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New Classification Task
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What We Have Gone Through
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What’s Next

« Transformer - Self Attention
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